

BaerCoil® Forming Taps

The thread is formed and not cut. Specialized BaerCoil® forming taps, which form and plasticize the material, are used for this purpose. The parent thread material is compressed to make it stronger.

Result: The thread into which the BaerCoil® wire thread insert is turned has a significantly higher load capacity. The process of thread forming is faster and produces a better surface than thread cutting. Additionally there are no chips, and the thread forming tap has a longer life time.

Grain structure of a cutted thread

Grain structure of a formed thread
The patent material gets compressed, will be
strengthed and the resistance of the thread
gets increased

BaerCoil® System for strongest bolted connection

The BaerCoil® System's combination of thread forming and wire thread insert make modern dimensions possible for construction, development and improvement of previous building components.

Cryogenic Materialtests - CryoMaK within the Institute for Technical Physics at the Institute of Technology in Karlsruhe – KIT – have conducted pull-out strength tests. And customers, after performing internal tests, are already taking advantage of the system and have integrated it into their production process.

- increased pull out strength and torque of the formed threads
- creates a better surface quality
- no problems with chip
- longer tool lifetime

Materials:

- stainless steel materials up to 950 N/mm²
- construction steels up to 800 N/mm²
- heat-treatable steels up to 1000 N/mm²
- aluminium alloys
- zinc alloys
- copper alloys

BaerCoil® Forming Taps

works standard

BAER BaerCoil Forming Tap

	M	D1	D2	L1	L2		0	No.	Part No
М	2 x 0,4	2,54	2,8	50	9.0	2,10	2,35	B3601	L7F5702000
M	2,5 x 0,45		3,5	56	10,0	2,70	2,90	B3603	L7F5720500
M	3 x 0,5	3,68	4,5	63	12,0	3,40	3,40	B3605	L7F5703000
M	4 x 0,7	4,94	6,0	70	14,0	4,90	4,60	B3607	L7F5704000
M	5 x 0,8	6,07	6,0	80	16,0	4,90	5,65	B3608	L7F5705000
M	6 x 1,0	7,34	8,0	90	18,0	6,20	6,85	B3609	L7F5706000
M	8 x 1,25	9,67	10,0	99	20,0	8,00	9,05	B3611	L7F5708000
M	10 x 1, <mark>5</mark>	11,99	9,0	100	22,0	7,00	11,30	B3615	L7F5710000
M	12 x 1,75	14,33	11,0	110	25,0	9,00	13,50	B3620	L7F5712000

Please inquire further thread standards and dimensions.

1 Find forming speeds on page 63

